Vlasov-Poisson-Poisson equations, critical mass and kordylewski clouds
نویسندگان
چکیده
منابع مشابه
Symmetrization of Vlasov-Poisson Equations
We detail the spectrum of the linearized Vlasov-Poisson equation, and construct an original integro-differential operator which is related to the eigenstructure. It gives a new representation formula for the electric field, and yields new estimates for the linear Landau damping. Then we apply the technique to a problem with a dependence to the Debye length, and show weaker damping for small Deb...
متن کاملTsallis Entropy and the Vlasov - Poisson Equations
We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravitational N -body systems. We review their main characteristics and discuss their relationship with other applications of Tsallis statistics to systems with long range interactions. In the following considerations we shall be dealing with a D-dimensional space so as to be in a position to investigate poss...
متن کاملSplitting methods for Vlasov–Poisson and Vlasov–Maxwell equations
A rigorous convergence analysis of the Strang splitting algorithm for Vlasov-type equations in the setting of abstract evolution equations is provided. It is shown that, under suitable assumptions, the convergence is of second order in the time step τ . As an example, it is verified that the Vlasov–Poisson equations in 1+1 dimensions fit into the framework of this analysis. Further, numerical e...
متن کاملThe Vlasov-Poisson Equations as the Semiclassical Limit of the Schrödinger-Poisson Equations: A Numerical Study
In this paper, we numerically study the semiclassical limit of the SchrödingerPoisson equations as a selection principle for the weak solution of the VlasovPoisson in one space dimension. Our numerical results show that this limit gives the weak solution that agrees with the zero diffusion limit of the Fokker-Planck equation. We also numerically justify the multivalued solution given by a momen...
متن کاملFrom Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck Systems to Incompressible Euler Equations: the case with finite charge
We study the asymptotic regime of strong electric fields that leads from the Vlasov–Poisson system to the Incompressible Euler equations. We also deal with the Vlasov–Poisson–Fokker– Planck system which induces dissipative effects. The originality consists in considering a situation with a finite total charge confined by a strong external field. In turn, the limiting equation is set in a bounde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Доклады Академии наук
سال: 2019
ISSN: 0869-5652
DOI: 10.31857/s0869-56524853276-280